Splitting up method for the 2D stochastic Navier-Stokes equations

نویسندگان

  • H. BESSAIH
  • A. MILLET
چکیده

Abstract. In this paper, we deal with the convergence of an iterative scheme for the 2-D stochastic Navier-Stokes Equations on the torus suggested by the LieTrotter product formulas for stochastic differential equations of parabolic type. The stochastic system is split into two problems which are simpler for numerical computations. An estimate of the approximation error is given either with periodic boundary conditions. In particular, we prove that the strong speed of the convergence in probability is almost 1/2. This is shown by means of an L(Ω,P) convergence localized on a set of arbitrary large probability. The assumptions on the diffusion coefficient depend on the fact that some multiple of the Laplace operator is present or not with the multiplicative stochastic term. Note that if one of the splitting steps only contains the stochastic integral, then the diffusion coefficient may not contain any gradient of the solution.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An approximation scheme of stochastic Stokes equations ∗

This work is concerned with the approximation to the solutions of the stochastic Stokes equations by the splitting up method. We apply the resolvent operator to evaluate the solution of the deterministic equations at the endpoints of every small interval, and the error is estimated.

متن کامل

A Modified Flux Vector Splitting Scheme for Flow Analysis in Shock Wave Laminar Boundary Layer Interactions

The present work introduces a modified scheme for the solution of compressible 2-D full Navier-Stokes equations, using Flux Vector Splitting method. As a result of this modification, numerical diffusion is reduced. The computer code which is developed based on this algorithm can be used easily and accurately to analyze complex flow fields with discontinuity in properties, in cases such as shock...

متن کامل

Scientific Flow Field Simulation of Cruciform Missiles Through the Thin Layer Navier Stokes Equations

The thin-layer Navier-Stokes equations are solved for two complete missile configurations on an IBM 3090-200 vectro-facility supercomputer. The conservation form of the three-dimensional equations, written in generalized coordinates, are finite differenced and solved on a body-fitted curvilinear grid system developed in conjunction with the flowfield solver. The numerical procedure is based on ...

متن کامل

A Modified Flux Vector Splitting Scheme for Flow Analysis in Shock Wave Laminar Boundary Layer Interactions

The present work introduces a modified scheme for the solution of compressible 2-D full Navier-Stokes equations, using Flux Vector Splitting method. As a result of this modification, numerical diffusion is reduced. The computer code which is developed based on this algorithm can be used easily and accurately to analyze complex flow fields with discontinuity in properties, in cases such as shock...

متن کامل

Stochastic 2D hydrodynamical type systems: Well posedness and large deviations

We deal with a class of abstract nonlinear stochastic models, which covers many 2D hydrodynamical models including 2D Navier-Stokes equations, 2D MHD models and 2D magnetic Bénard problem and also some shell models of turbulence. We first prove the existence and uniqueness theorem for the class considered. Our main result is a Wentzell-Freidlin type large deviation principle for small multiplic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013